例一:

解:
设:∣∣bc∣∣=BC;∣∣ad∣∣=AD;∣∣ae∣∣=AE;∣∣fc∣∣=FC;∣∣ba∣∣=ABbc=(x,0);ad=(x,0);ae=(0,x2);fc=(x2,0);ba=(0,x)得:ba+bc=bd=(x,x)ea+ad=ed=(x,−x2)db+dc=dc=(0,−x)dc+cf=df=(−x2,−x)∣∣df∣∣=[df,df];∣∣ed∣∣=[ed,ed]∣∣ed∣∣=∣∣df∣∣=ED=DFcosθ=∣∣ed∣∣∣∣df∣∣[df,ed]cosθ=0=90o⇔∠EDF显然:DG⊥EF
例二:

解:
设:∣∣bf∣∣=BF;∣∣be∣∣=BE;∣∣eo∣∣=EO;∣∣cf∣∣=CF;∣∣ba∣∣=BA;∣∣ef∣∣=EF显然且设:bf=(5,0);be=(x,0);cf=(x,0);ba=(x,y);ef=(5−x,0)得:ba+ed=ea=(0,y)ea+ef=ed=(5−x,y)eo=(25−x,2y){∣∣ba∣∣=3∣∣eo∣∣=2解得{xy=1.8=2.4显然:y=AE=DE=2.4
例三:

解:
设:∣∣ba∣∣=BA;∣∣bc∣∣=BC;∣∣bd∣∣=BD得:AD//BC⇔∠DAC=∠ACB=45o⇔BA=ACba=(2,y);bc=(22,0)[ba,ba]y=2=2ba+bc=bd∣∣bd∣∣=25
例四:

解:
显然:PC=(x−2)2+(x33)2PB=2x2+(x33)2f(x)=(x−2)2+(x33)2+2x2+(x33)2dxdf=(23x2−2⋅33x+2⋅33)∣x∣(2x−3)4x2−12x+12∣x∣+2x3−6x2+6x令:dxdf=0解得:x=0得:f(0)=2故:min(PC+2PB)=2