例一:

-

解:

设:bc=BCad=ADae=AEfc=FCba=ABbc=(x,0)ad=(x,0)ae=(0,x2)fc=(x2,0)ba=(0,x)得:ba+bc=bd=(x,x)ea+ad=ed=(x,x2)db+dc=dc=(0,x)dc+cf=df=(x2,x)df=[df,df]ed=[ed,ed]ed=df=ED=DFcosθ=[df,ed]eddfcosθ=0=90oEDF显然:DGEF\begin{align*} &\text{设:}\\ &||bc||=BC\text{;}||ad||=AD\text{;}||ae||=AE\text{;}||fc||=FC\text{;}||ba||=AB\\ &bc = (x,0)\text{;}ad=(x,0)\text{;}ae=(0,x_2)\text{;}fc=(x_2,0)\text{;}ba=(0,x)\\ &\text{得:}\\ &ba+bc=bd=(x,x)\\ &ea+ad=ed=(x,-x_2)\\ &db+dc=dc=(0,-x)\\ &dc+cf=df=(-x_2,-x)\\ &||df||=\sqrt{[df,df]}\text{;}||ed||=\sqrt{[ed,ed]}\\ &||ed||=||df||=ED=DF\\ &cos\theta=\frac{[df,ed]}{||ed||||df||}\\ &cos\theta=0=90^o\Leftrightarrow\angle EDF\\ &\text{显然:}DG\perp EF \end{align*}


例二:

-

解:

设:bf=BFbe=BEeo=EOcf=CFba=BAef=EF显然且设:bf=(5,0)be=(x,0)cf=(x,0)ba=(x,y)ef=(5x,0)得:ba+ed=ea=(0,y)ea+ef=ed=(5x,y)eo=(5x2,y2){ba=3eo=2解得{x=1.8y=2.4y=AE=DE=2.4\begin{align*} &\text{设:}\\ &||bf||=BF\text{;}||be||=BE\text{;}||eo||=EO\text{;}||cf||=CF\text{;}||ba||=BA\text{;}||ef||=EF\\ &\text{显然且设:}\\ &bf=(5,0)\text{;}be=(x,0)\text{;}cf=(x,0)\text{;}ba=(x,y)\text{;}ef=(5-x,0)\\ &\text{得:}\\ &ba+ed=ea=(0,y)\\ &ea+ef=ed=(5-x,y)\\ &eo=(\frac{5-x}{2},\frac{y}{2})\\ & \left\{ \begin{aligned} ||ba||=3 \\ ||eo||=2 \\ \end{aligned} \right. &\\ &\text{解得} \left\{ \begin{aligned} x&=1.8 \\ y&=2.4 \\ \end{aligned} \right. &\\ &\therefore y=AE=DE=2.4 \end{align*}


例三:

-

解:

设:ba=BAbc=BCbd=BD得:AD//BCDAC=ACB=45oBA=ACba=(2,y)bc=(22,0)[ba,ba]=2y=2ba+bc=bdbd=25\begin{align*} &\text{设:}\\ &||ba||=BA\text{;}||bc||=BC\text{;}||bd||=BD\\ &\text{得:}\\ &AD//BC\Leftrightarrow\angle DAC=\angle ACB=45^o\Leftrightarrow BA=AC\\ &ba=(\sqrt{2},y)\text{;}bc=(2\sqrt{2},0)\\ &\begin{aligned} \sqrt{[ba,ba]}&=2\\ y&=\sqrt{2} \end{aligned}\\ &ba+bc=bd\\ &||bd||=2\sqrt{5}\\ \end{align*}


例四:

-

解:

显然:PC=(x2)2+(x33)2PB=x2+(x33)22f(x)=(x2)2+(x33)2+x2+(x33)22dfdx=(2x3)4x212x+12x+2x36x2+6x(23x2233x+233)xdfdx=0解得x=0f(0)=2min(PC+PB2)=2\begin{align*} \begin{aligned} &\text{显然:}\\ &PC=\sqrt{(x-2)^2+(x\frac{3}{3})^2}\\ &PB=\frac{\sqrt{x^2+(x\frac{\sqrt{3}}{3})^2}}{2}\\ &f(x)=\sqrt{(x-2)^2+(x\frac{3}{3})^2}+\frac{\sqrt{x^2+(x\frac{\sqrt{3}}{3})^2}}{2}\\ &\frac{df}{dx}=\dfrac{\left(2\,x-3\right)\,\sqrt{4\,{x}^{2}-12\,x+12}\,\left|x\right|+2\,{x}^{3}-6\,{x}^{2}+6\,x}{\left(2\,\sqrt{3}\,{x}^{2}-2\cdot 3\,\sqrt{3}\,x+2\cdot 3\,\sqrt{3}\right)\,\left|x\right|}\\ &\text{令}\frac{df}{dx}=0\\ &\text{解得}x=0\\ &\text{则}f(0)=2\\ &\therefore min(PC+\frac{PB}{2})=2 \end{aligned} \end{align*}

虽然,例四其实连算的不用算……