例一:

-

解:

:bc=BCad=ADae=AEfc=FCba=ABbc=(x,0)ad=(x,0)ae=(0,x2)fc=(x2,0)ba=(0,x):ba+bc=bd=(x,x)ea+ad=ed=(x,x2)db+dc=dc=(0,x)dc+cf=df=(x2,x)df=[df,df]ed=[ed,ed]ed=df=ED=DFcosθ=[df,ed]eddfcosθ=0=90oEDF显然:DGEF设:\\ ||bc||=BC;||ad||=AD;||ae||=AE;||fc||=FC;||ba||=AB\\ bc = (x,0);ad=(x,0);ae=(0,x_2);fc=(x_2,0);ba=(0,x)\\ 得:\\ ba+bc=bd=(x,x)\\ ea+ad=ed=(x,-x_2)\\ db+dc=dc=(0,-x)\\ dc+cf=df=(-x_2,-x)\\ ||df||=\sqrt{[df,df]};||ed||=\sqrt{[ed,ed]}\\ ||ed||=||df||=ED=DF\\ cos\theta=\frac{[df,ed]}{||ed||||df||}\\ cos\theta=0=90^o\Leftrightarrow\angle EDF\\ 显然:DG\perp EF


例二:

-

解:

:bf=BFbe=BEeo=EOcf=CFba=BAef=EF显然且设:bf=(5,0)be=(x,0)cf=(x,0)ba=(x,y)ef=(5x,0):ba+ed=ea=(0,y)ea+ef=ed=(5x,y)eo=(5x2,y2){ba=3eo=2解得{x=1.8y=2.4显然:y=AE=DE=2.4设:\\ ||bf||=BF;||be||=BE;||eo||=EO;||cf||=CF;||ba||=BA;||ef||=EF\\ 显然且设:\\ bf=(5,0);be=(x,0);cf=(x,0);ba=(x,y);ef=(5-x,0)\\ 得:\\ ba+ed=ea=(0,y)\\ ea+ef=ed=(5-x,y)\\ eo=(\frac{5-x}{2},\frac{y}{2})\\ \left\{ \begin{aligned} ||ba||=3 \\ ||eo||=2 \\ \end{aligned} \right. \\ 解得 \left\{ \begin{aligned} x&=1.8 \\ y&=2.4 \\ \end{aligned} \right. \\ 显然:\\ y=AE=DE=2.4


例三:

-

解:

:ba=BAbc=BCbd=BD:AD//BCDAC=ACB=45oBA=ACba=(2,y)bc=(22,0)[ba,ba]=2y=2ba+bc=bdbd=25设:\\ ||ba||=BA;||bc||=BC;||bd||=BD\\ 得:\\ AD//BC\Leftrightarrow\angle DAC=\angle ACB=45^o\Leftrightarrow BA=AC\\ ba=(\sqrt{2},y);bc=(2\sqrt{2},0)\\ \begin{equation} \begin{aligned} \sqrt{[ba,ba]}&=2\\ y&=\sqrt{2} \end{aligned} \end{equation}\\ ba+bc=bd\\ ||bd||=2\sqrt{5}


例四:

-

解:

显然:PC=(x2)2+(x33)2PB=x2+(x33)22f(x)=(x2)2+(x33)2+x2+(x33)22dfdx=(2x3)4x212x+12x+2x36x2+6x(23x2233x+233)x:dfdx=0解得:x=0:f(0)=2:min(PC+PB2)=2显然:\\ PC=\sqrt{(x-2)^2+(x\frac{3}{3})^2}\\ PB=\frac{\sqrt{x^2+(x\frac{\sqrt{3}}{3})^2}}{2}\\ f(x)=\sqrt{(x-2)^2+(x\frac{3}{3})^2}+\frac{\sqrt{x^2+(x\frac{\sqrt{3}}{3})^2}}{2}\\ \frac{df}{dx}=\dfrac{\left(2\,x-3\right)\,\sqrt{4\,{x}^{2}-12\,x+12}\,\left|x\right|+2\,{x}^{3}-6\,{x}^{2}+6\,x}{\left(2\,\sqrt{3}\,{x}^{2}-2\cdot 3\,\sqrt{3}\,x+2\cdot 3\,\sqrt{3}\right)\,\left|x\right|}\\ 令:\\ \frac{df}{dx}=0\\ 解得:x=0\\ 得:\\ f(0)=2\\ 故:\\ min(PC+\frac{PB}{2})=2

虽然,例四其实连算的不用算……